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General Closed-Form PML Constitutive
Tensors to Match Arbitrary Bianisotropic
and Dispersive Linear Media

F. L. Teixeira and W. C. Chewkellow, IEEE

Abstract—The perfectly matched layer (PML) constitutive importantly, the extension to corner regions (which play a
tensors that match more general linear media presenting bian- piyotal role on the algorithm) is possible.

isotropic and dispersive behavior are obtained for single interface A disadvantage of MIPML, however, is the need to work

problems and for two-dimensional (2-D) and three-dimensional . = = = —= . —
(3-D) corner regions. The derivation is based on the analytic con- with the D, B, £, and H fields, as opposed to only thg

tinuation of Maxwell's equations to a complex variables domain. andH fields in the original PML-FDTD formulation. This, in
The formulation is Maxwellian so that it is equally applicable to  principle, doubles the memory requirements. In addition, the
the finite-difference time-domain (FDTD) or finite-element (FEM)  MIPML is a non-Maxwellian formulation (i.e., the resultant
methods. It recovers, as special cases, previous anisotropic mediafields inside the PML do not obey the Maxwell's equations)
formulations, and dispersive media formulations. . . . . N
o _ o _ _ and no information is available on th&ctual constitutive
Index Terms—Bianisotropic media, dispersive media, FDTD, tensors inside the PML region. This is a serious drawback for
FEM, perfectly matched layer. methods other than the finite-difference time-domain (FDTD),
such as the finite-element method (FEM).
|. INTRODUCTION As a result, it is of interest to develop a scheme endowed
HE perfectly matched layer (PML) absorbing boun darW|th the {slttractlveT fe_atures of the two approaches outlined
o . . bove, minus their disadvantages. Such scheme would have
condition (ABC) was first developed for planar mterfacelsh . L : .
LN . ) . . e following characteristics: 1) general, i.e., applicable to
in isotropic and nondispersive media [1]. Apart from the aterials with electric and/or magnetic anisotropy (or even
related work on the nonplanar quasi-PML [2]-[4], rece 1 9 by

work on the PML has been focused on its extension torka_mlsotropy), and/or dispersion; .2) Mavxwellian, _and ther_efore
. L : itable for the FEM, and serving as a physical basis for
more general geometries (cylindrical [5]—[8], spherical [5], [6 . : e . )
; ossible engineered artificial materials [14]; 3) conceptually
and conformal [9] interfaces) and 2) to more general media LT . .
. . . . : simple, resulting in little analytical effort to derive the PML
(dispersive [10], [11], and anisotropic [12], [13] media). o )
.constitutive parameters to match these general media even at

The extension of the PML to more general media in C .
[10]-[13] has been carried out by two basic approaches. T arner regions; and 4) amenable to be formulated in terms of
| and H only.

first approach [10], [13] constitutes writing the Maxwell's The derivation of the PML for nonplanar geometries in

curl equations (ME’s) in terms oD and B also, instead , . S
of E and & only (thereby producing a material-independer{F]’ [6], [9] was carried out through an analytic continuation
complex stretching approach [15]) of ME’s to a complex

PML, or MIPML) and then modifying them by IntrOduﬂngvariables spatial domain. In [16], it was described how the

the matched conductivities and field-splitting directly éh complex stretching approach can be applied to obtain PML

andB as |s_done fo.'E andH in the original PML (isotropic, ff)r dispersive and anisotropic media in a straightforward
nondispersive media). The second approach [11], [12] CoManner. However, the formulation was non-Maxwellian and
tutes determining the reflection coefficients for the interfacne PML'constitutiv,e parameter was obtained. In this work, we
In terms of th? _unknown PML constitutive parameters antill show that it is possible to further extend this approach
analytically deriving the resultant PML constitutive paramete% obtain Maxwellian PML’s for an arbitrary bianisotropic
that produce a matched interface.

.and dispersive media, exhibiting the attractive characteristics

Of thesg two approgches, the MIPML 'S more powerfu'.laescribed on the previous paragraph. This shows that the
the following sense. First, the costly analytical effort to derive . ; "
the actual constitutive parameters inside the PML from thconjecture [12], [13] that no matching conditions could be

. o parame : obtained for arbitrary anisotropic media in three dimensions
reflection coefficient analysis is avoided. Second, and mo(r§_D) is false

i ) ) Throughout this work, the=*t time convention is used.
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[5], [15]. Closed-form solutions for the fields inside a PMLlenforcing the complex stretching on the PML region [16].
region can be easily obtained by noting that closed-forinside the complex space PML, the modified ME's then simply
solutions that already exist for Maxwellian fields in reateads
space map directly to the complex space through this analytic

continuation. The general effect of this analytic continuation is Y X EC(T) IWBKF)~ (9a)
to alter the eigenfunctions of ME’s so that propagating modes V x HY(F) = —iwD(T) (9b)
are mapped continuously to exponentially decaying modes,

allowing for the reflectionless absorption of electromagnetféith

waves. This concept is also applicable to other linear wave D7) =¢(w) - E°(F) + E(w) - H°(F) (9¢)
phenomena (scalar [17], elastic [18]) to achieve a PML ABC .= e~ — —

in such cases. It can also be extended to other coordinate BE(r) =((w) - £ (7) + [iw) - H(7). (9d)

systgms .[5]’.[6]’ [9]. In Cartesian coordinates, this a_nalytif;he subscriptc indicates that the fields in (9) are not
continuation is expressed by the following transformation: Maxwellian. Using (2) and (5) we can recast (9a) and (9b)

o /u o) did 1) in the real sBace domaii )

0 (S-V)x EST -7) =iwB*(T - 7) (10a)
where s, (u) are the complex stretching variables [15] and T T .7 — i DT . 7

stands forz, y, z. This transformation can also be expressed (8- V) x HAL-7) = —iwDI"- 7). (100)

in terms of a dyadic functiod™ such that Using (7), we write (10a) and (10b) as
Fo =07 2 Vx[§ E(T 7)) =iw(det $)"'S- BT -7) (11a)
?zazﬁ:(f) +;gg<9) +77<f) @) Vx[SL-HYT -7)] = —iw(det 5)"'5 - DT - 7). (11b)

T Y z

The Maxwell's equations in complex space reads as usual l!)rllﬁroducmg a new set of fields defined as

with the nabla operator changed as Ee(7) _35-1 _EC(iF) (122)
A S H(r) =57 H(@T-7) (12b)
o VLS 1, D7) = (det 5)~15 - D°(T - 7) (12¢)
=t TS ey TS v (4) B(7) = (det 5)"L5 - BT - 7) (12d)
Or simply, and substituting back in (11), we have
V=5.V (5) V x E*(F) =iwB(F) (13a)
with V x H(7) = —iwD*(7) (13b)
= with
S:ﬁ:ﬁ;(i)+g@<i)+éé<i). (6) B o
* A D*(F) ={(det. $)_[S - &w) - S} - B*(7)
Since s, (1) and 9/0u’ commute foru # «/, and S is a + {(det $)" S - &(w) - 8]} - HY(F) (13c)

diagonal tensor, the following identity can be verified for the B = {(det $)=15 - Cw) - SV - BEo(F
Cartesian PML and any vector functiai(7) in Cartesian (7) =H(de ):[_1 i(w_) ]}: (i)
coordinates + {(det S)77[S - plw) - S]} - H(7). (13d)

V x (?—1 -@) = (det ?)—1? (§ Vyxa (7) Therefore, the field€®, H*, D*, B* obey the ME's. They

_ _ also coincide with the original field&', H, D, B inside the

V\{he.l'e det § I (stysz)_l. The dyadlcF also satisfies a physica| domain (non_PML region), SincE — E — T
similar equation. there. Furthermore, from (12), it is seen that they present

In a bianisotropic and dispersive media, the ME's are  the same attenuative behavior Bf, H¢, D¢, B¢ inside the
V x E(F) =iwB(F) (8a) P_ML_,_whlle retaining the perfect mqtchlng conditions. T_he
significance of this result is that, given a general medium

VX H(T) = —iwD(T) (8b) gw), &(w), {(w), filw), a Maxwellian PML can be obtained
with with bianisotropic constitutive parameters given as
D(F) =&w) - E(F) + &(w) - HT) (8c) EomL = (det 5)71[S - E(w) - I (14a)
B(F) =((w) - E() + i(w) - H(T). (8d) fipnn, = (det S)7HS - Ti(w) - 5] (14b)
= o = _1 p—y = =.
The PML in complex space for such a media is obtained by gPML = (det i) [i'g(w) 'i] (14c)
just keeping thesameconstitutive parametemverywhereand Epyr, = (det S)7LS - E(w) - S]. (144d)
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These formulas give directly the bianisotropic constitutive

parameters that have to be present both in single interfa
problems (with two of the stretching variables in (6) set equ

i

to unity) and two-dimensional (2-D) or 3-D corner interfaces
(with one single or none of the stretching variables set equat!

to unity).

The field transformations in (12) are similar to the onegs]
carried out in [19] for fields subject to affine transformations
that change the metric of the space. This is because (@]
bears a formal resemblance to the expression of an affine

transformation. On this respect, we should note ﬂT‘(at) is
a function of position, and therefore, (2) definesa@nlinear

transformation onr. Moreover, it always preserves the or-

thogonality of the metric, sinc€ is diagonal (also true for

(8]

9

PML'’s in other orthogonal coordinates systems [6], [9]). In
the Fourier domain, the PML is to be viewed as@mplex [10]

mapping (stretching) of the metric.

I1l. CONCLUDING REMARKS

[11]

A general formulation is presented to extend the PML to a2l
bitrary linear media presenting bianisotropy and/or dispersion.
It is based on the analytic continuation of Maxwell's equations
to a complex variables domain. It is shown that, in thedé3l
media, a Maxwellian PML formulation is also possible. This
formulation is such that the PML can be realized as a medium
with suitable defined bianisotropic constitutive tensors. Frof#]

the original media tensors(w), {(w), ((w), f(w), a set
of perfectly matched tenso@eyr(w), Eppp(w)s CppmL(w),

[15]

7ipmr(w) is obtained in a simple and systematic way. A
limitation of this approach, however, is that it does not applye]
to nonlinear media. For a recent (non-Maxwellian) extension

of the PML to nonlinear media, see [20].
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