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General Closed-Form PML Constitutive
Tensors to Match Arbitrary Bianisotropic

and Dispersive Linear Media
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Abstract—The perfectly matched layer (PML) constitutive
tensors that match more general linear media presenting bian-
isotropic and dispersive behavior are obtained for single interface
problems and for two-dimensional (2-D) and three-dimensional
(3-D) corner regions. The derivation is based on the analytic con-
tinuation of Maxwell’s equations to a complex variables domain.
The formulation is Maxwellian so that it is equally applicable to
the finite-difference time-domain (FDTD) or finite-element (FEM)
methods. It recovers, as special cases, previous anisotropic media
formulations, and dispersive media formulations.

Index Terms—Bianisotropic media, dispersive media, FDTD,
FEM, perfectly matched layer.

I. INTRODUCTION

T HE perfectly matched layer (PML) absorbing boundary
condition (ABC) was first developed for planar interfaces

in isotropic and nondispersive media [1]. Apart from the
related work on the nonplanar quasi-PML [2]–[4], recent
work on the PML has been focused on its extension to 1)
more general geometries (cylindrical [5]–[8], spherical [5], [6],
and conformal [9] interfaces) and 2) to more general media
(dispersive [10], [11], and anisotropic [12], [13] media).

The extension of the PML to more general media in
[10]–[13] has been carried out by two basic approaches. The
first approach [10], [13] constitutes writing the Maxwell’s
curl equations (ME’s) in terms of and also, instead
of and only (thereby producing a material-independent
PML, or MIPML) and then modifying them by introducing
the matched conductivities and field-splitting directly on
and as is done for and in the original PML (isotropic,
nondispersive media). The second approach [11], [12] consti-
tutes determining the reflection coefficients for the interface
in terms of the unknown PML constitutive parameters and
analytically deriving the resultant PML constitutive parameters
that produce a matched interface.

Of these two approaches, the MIPML is more powerful in
the following sense. First, the costly analytical effort to derive
the actual constitutive parameters inside the PML from the
reflection coefficient analysis is avoided. Second, and more
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importantly, the extension to corner regions (which play a
pivotal role on the algorithm) is possible.

A disadvantage of MIPML, however, is the need to work
with the , and fields, as opposed to only the
and fields in the original PML-FDTD formulation. This, in
principle, doubles the memory requirements. In addition, the
MIPML is a non-Maxwellian formulation (i.e., the resultant
fields inside the PML do not obey the Maxwell’s equations)
and no information is available on theactual constitutive
tensors inside the PML region. This is a serious drawback for
methods other than the finite-difference time-domain (FDTD),
such as the finite-element method (FEM).

As a result, it is of interest to develop a scheme endowed
with the attractive features of the two approaches outlined
above, minus their disadvantages. Such scheme would have
the following characteristics: 1) general, i.e., applicable to
materials with electric and/or magnetic anisotropy (or even
bianisotropy), and/or dispersion; 2) Maxwellian, and therefore
suitable for the FEM, and serving as a physical basis for
possible engineered artificial materials [14]; 3) conceptually
simple, resulting in little analytical effort to derive the PML
constitutive parameters to match these general media even at
corner regions; and 4) amenable to be formulated in terms of

and only.
The derivation of the PML for nonplanar geometries in

[5], [6], [9] was carried out through an analytic continuation
(complex stretching approach [15]) of ME’s to a complex
variables spatial domain. In [16], it was described how the
complex stretching approach can be applied to obtain PML
for dispersive and anisotropic media in a straightforward
manner. However, the formulation was non-Maxwellian and
no PML constitutive parameter was obtained. In this work, we
will show that it is possible to further extend this approach
to obtain Maxwellian PML’s for an arbitrary bianisotropic
and dispersive media, exhibiting the attractive characteristics
described on the previous paragraph. This shows that the
conjecture [12], [13] that no matching conditions could be
obtained for arbitrary anisotropic media in three dimensions
(3-D) is false.

Throughout this work, the time convention is used.

II. FORMULATION

The PML was shown to be equivalent to an analytic
continuation of ME’s to a complex variables spatial domain
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[5], [15]. Closed-form solutions for the fields inside a PML
region can be easily obtained by noting that closed-form
solutions that already exist for Maxwellian fields in real
space map directly to the complex space through this analytic
continuation. The general effect of this analytic continuation is
to alter the eigenfunctions of ME’s so that propagating modes
are mapped continuously to exponentially decaying modes,
allowing for the reflectionless absorption of electromagnetic
waves. This concept is also applicable to other linear wave
phenomena (scalar [17], elastic [18]) to achieve a PML ABC
in such cases. It can also be extended to other coordinate
systems [5], [6], [9]. In Cartesian coordinates, this analytic
continuation is expressed by the following transformation:

(1)

where are the complex stretching variables [15] and
stands for . This transformation can also be expressed
in terms of a dyadic function such that

(2)

(3)

The Maxwell’s equations in complex space reads as usual but
with the nabla operator changed as

(4)

Or simply,

(5)

with

(6)

Since and commute for , and is a
diagonal tensor, the following identity can be verified for the
Cartesian PML and any vector function in Cartesian
coordinates

(7)

where . The dyadic also satisfies a
similar equation.

In a bianisotropic and dispersive media, the ME’s are

(8a)

(8b)

with

(8c)

(8d)

The PML in complex space for such a media is obtained by
just keeping thesameconstitutive parameterseverywhereand

enforcing the complex stretching on the PML region [16].
Inside the complex space PML, the modified ME’s then simply
reads

(9a)

(9b)

with

(9c)

(9d)

The subscript indicates that the fields in (9) are not
Maxwellian. Using (2) and (5) we can recast (9a) and (9b)
in the real space domain

(10a)

(10b)

Using (7), we write (10a) and (10b) as

(11a)

(11b)

Introducing a new set of fields defined as

(12a)

(12b)

(12c)

(12d)

and substituting back in (11), we have

(13a)

(13b)

with

(13c)

(13d)

Therefore, the fields obey the ME’s. They
also coincide with the original fields inside the
physical domain (non-PML region), since
there. Furthermore, from (12), it is seen that they present
the same attenuative behavior of inside the
PML, while retaining the perfect matching conditions. The
significance of this result is that, given a general medium

, a Maxwellian PML can be obtained
with bianisotropic constitutive parameters given as

(14a)

(14b)

(14c)

(14d)
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These formulas give directly the bianisotropic constitutive
parameters that have to be present both in single interface
problems (with two of the stretching variables in (6) set equal
to unity) and two-dimensional (2-D) or 3-D corner interfaces
(with one single or none of the stretching variables set equal
to unity).

The field transformations in (12) are similar to the ones
carried out in [19] for fields subject to affine transformations
that change the metric of the space. This is because (2)
bears a formal resemblance to the expression of an affine
transformation. On this respect, we should note that is
a function of position, and therefore, (2) defines anonlinear
transformation on . Moreover, it always preserves the or-
thogonality of the metric, since is diagonal (also true for
PML’s in other orthogonal coordinates systems [6], [9]). In
the Fourier domain, the PML is to be viewed as acomplex
mapping (stretching) of the metric.

III. CONCLUDING REMARKS

A general formulation is presented to extend the PML to ar-
bitrary linear media presenting bianisotropy and/or dispersion.
It is based on the analytic continuation of Maxwell’s equations
to a complex variables domain. It is shown that, in these
media, a Maxwellian PML formulation is also possible. This
formulation is such that the PML can be realized as a medium
with suitable defined bianisotropic constitutive tensors. From
the original media tensors , , , , a set
of perfectly matched tensors , , ,

is obtained in a simple and systematic way. A
limitation of this approach, however, is that it does not apply
to nonlinear media. For a recent (non-Maxwellian) extension
of the PML to nonlinear media, see [20].
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